A 2021 paper by Zurek applied a random walk argument to a black hole horizon. Credit, Zurek, 2021 Zurek called this a blurring of the horizon (a fuzzy, or uncertain horizon), and also went through some equivalent derivations, which basically supported the idea this length scale is the quantum uncertainty in the position of the BH horizon, aka a dynamic quantum width of an event horizon (a concept which would therefore also apply to the universe's own CEH). The Bekenstein-Hawking entropy gives the number of quantum degrees of freedom that can fluctuate. Below, we step out our own cosmic de-Sitter derivation of the random walk argument, obtaining the same result as Zurek did, so its certainly correct! \begin{equation} \Delta x^2 =2 DT \end{equation} In this equation, $\Delta x$ is the position uncertainty, $D$ is the Einstein diffusion coefficient and $T$ is the time between measurements (aka the relaxation time). So, lets look at the Einstein diffusion co...
In this post, we introduced the idea that in the presence of a positive cosmological constant, there is a minimum (local) mass $m_{GR}$ McDormand swinging a cosmic light-like mass-energy $m_{GR}$, with a "cosmic string" of radius $l_{\Lambda}$, giving a centripetal force $F_{local}=m_{GR} \ c^2/l_{\Lambda}$. Let's think about that string for a bit. In fact, a great number of physicists have spent their entire careers tied up unraveling string theory . For a classical string, which lives in D = 10 dimensions, associated with Nambu-Goto action, the the string tension $T_G$ is a local force, or energy per unit length (dimensions $MLT^{-2}$): \begin{equation} \notag T_G = \frac{1}{2\pi \alpha \prime} \end{equation}$\alpha \prime$ is the Regge slope parameter, set here with dimensions of inverse force. The wavelength of the stringy mass-energy standing wave (such that it does not interfere with itself), is the circumference of the circle, and we know it moves...