The paper , Origin of bulk viscosity in cosmology and its thermodynamic implications , is interesting. The paper establishes four facts: $$p_{\text{vis}}=-3\zeta H, \qquad \dot S_h>0, \qquad \dot S_m<0, \qquad T_m\neq T_h$$ and hence $$\boxed{\dot S_{\text{tot}}>0 ;\text{always}}$$ These are consequences of: Hubble expansion producing velocity gradients, The apparent horizon behaving as a thermodynamic boundary, The fluid inside the horizon being an open system. A complete, self-contained derivation synthesising the kinetic, fluid dynamics, EFT, and thermodynamic/irreversibility perspectives on bulk viscosity of the vacuum in an expanding FLRW universe. 1. Kinetic Derivation: Momentum Flux Across Layers Step 1: Setup As per the paper, consider three layers of "vacuum quanta" separated by mean free path $\lambda_m$: $S_1$ (below), $S_2$ (observer), $S_3$ (above). Fluid velocity relative to the comoving observer: $$v(d) = H d$$ where $H...
Yes , you can define an effective Poisson ratio for the horizon—but only in a very specific, emergent, hydrodynamic sense—and it takes its extremal value. The value you get is not arbitrary; it is forced on you by horizon incompressibility, maximal entropy, and diffusion physics. 1. What a Poisson ratio really measures The Poisson ratio (ν) is defined (in ordinary elasticity) as $$\nu = - \frac{\text{transverse strain}}{\text{longitudinal strain}}.$$ Equivalently, in terms of elastic moduli: $$\nu = \frac{3K - 2\mu}{2(3K + \mu)} \quad \text{(3D bulk)},$$ or $$\nu_{2D} = \frac{K_{2D} - \mu_{2D}}{K_{2D} + \mu_{2D}} \quad \text{(membrane)}.$$ So to even ask for a Poisson ratio, we need: a bulk (or area) modulus (K), a shear modulus (μ). This is where horizons are special. 2. Horizon fluids: what moduli exist? From the membrane paradigm, AdS/CFT, and your own derivations: Horizons have: finite shear viscosity (η), no elastic shear modulus ((μ = 0)), negative bulk ...