Skip to main content

Remarks on the cosmological constant and minimal acceleration

As Lineweaver explained, because our Universe is expanding at an accelerating rate, our Universe has a cosmic event horizon (CEH).  

Its an event horizon Jim, but not as we know it...Image credit: DALL.E2 by SR Anderson

Events beyond the CEH will never be observed. The CEH is also the source of de Sitter radiation, which has a specific temperature $T_{dS}$. It is the minimum possible temperature of the Universe, and, it is not absolute zero (zero Kelvins). Numerically $T_{dS} \approx 2.4 \times 10^{-30}K$, the universal minimum (black body) `absolute cold' local temperature of the future dS state. As a comparison, in 2020 the NASA Cold Atom lab was able to cool an atom to a record low $\sim 2 \times 10^{-7}K$. 

Now, in any theory one may think of temperature as an energy, and from the semi-classical Unruh relationship, temperature $\sim$ acceleration. Therefore:  

\begin{equation}
\notag
E_{dS} = T_{ds} \ k_B= \frac {\hslash a}{2\pi c}
\end{equation}

What we get from Unruh is $a=cH$, the universal background (local) minimum acceleration. $H$ is the future Hubble constant (as you probably know, this constant is not actually...constant). You could also express this as saying that our present Universe has a de Sitter attractor in our infinite far future.

Gibbons taught us that a theory with a minimum length should have a maximal acceleration and a maximal temperature. Now, we all know that in classical General Relativity (GR) there is no such thing as a minimum length. However, in most approaches to quantum gravity, which includes semi-classical approximations such as Hawking's black hole temperature and the Unruh relationship, there is such a beast. 

Here of course, we are talking about the local minimum universal acceleration, which implies the existence of a maximum length scale, being the de Sitter characteristic length $l_{\Lambda}$ the future cosmic event horizon radius. Numerically $l_{\Lambda} \sim 16 \ Gly$. You can also write $l_{\Lambda} =\sqrt{ {3}/{\Lambda}}$, showing that the cosmological constant is the only parameter in dS space. 

 

(Lambda, the symbol used for the cosmological constant)

 
 

Comments

Popular posts from this blog

Blurring the horizon - the quantum width of the cosmic event horizon

A 2021 paper by Zurek applied a random walk argument to a black hole horizon.   Credit, Zurek, 2021 Zurek called this a blurring of the horizon (a fuzzy, or uncertain horizon), and also went through some equivalent derivations, which basically supported the idea this length scale is the quantum uncertainty in the position of the BH horizon, aka a dynamic quantum width of an event horizon (a concept which would therefore also apply to the universe's own CEH). The Bekenstein-Hawking entropy gives the number of quantum degrees of freedom that can fluctuate. Below, we step out our own cosmic de-Sitter derivation of the random walk argument, obtaining the same result as Zurek did, so its certainly correct! \begin{equation} \Delta x^2 =2 DT \end{equation} In this equation, $\Delta x$ is the position uncertainty, $D$ is the Einstein diffusion coefficient and $T$ is the time between measurements (aka the relaxation time).    So, lets look at the Einstein diffusion co...

The Virial Horizon

  In general relativity, defining "energy" is notoriously difficult. A specific point of confusion often arises in de Sitter space: Why is the quasi-local energy of the horizon exactly double the effective gravitational mass? By imposing a fundamental consistency condition— Horizon Uncertainty—we can re-derive the thermodynamics of the de Sitter horizon. We find that the horizon behaves exactly like a quantum-stretched membrane, where the "factor of two" is simply the result of the Virial Theorem applied to spacetime itself. Horizon Position Uncertainty Whether through holographic arguments, diffusion models, or entanglement entropy, a causal horizon is never sharp. Its position fluctuates. The variance of the horizon position $\Delta x^2$  scales with the geometric mean of the Planck length $L_p$ ​ and the horizon radius $l_{\Lambda}$ ​ :  \begin{equation}     \Delta x^2 = L_P \, l_\Lambda, \qquad L_P = \sqrt{\frac{G\hbar}{c^3}} \end{equation}    W...

Our cosmic event horizon on a string

In this post, we introduced the idea that in the presence of a positive cosmological constant, there is a minimum (local) mass $m_{GR}$   McDormand swinging a cosmic light-like mass-energy $m_{GR}$, with a "cosmic string" of radius $l_{\Lambda}$, giving a centripetal force $F_{local}=m_{GR} \ c^2/l_{\Lambda}$.    Let's think about that string for a bit. In fact, a great number of physicists have spent their entire careers tied up unraveling string theory . For a classical string, which lives in D = 10 dimensions, associated with Nambu-Goto action, the the string tension $T_G$ is a local force, or energy per unit length (dimensions $MLT^{-2}$): \begin{equation} \notag T_G = \frac{1}{2\pi \alpha \prime} \end{equation}$\alpha \prime$ is the Regge slope parameter, set here with dimensions of inverse force.  The wavelength of the stringy mass-energy standing wave (such that it does not interfere with itself), is the circumference of the circle, and we know it moves...